
Written Assignment 1
Variables, Data Types and Math

ECE 131 – Programming Fundamentals 
Instructor: M. Wolverton

W1.1 Definitions

Define each of the following items in the context of C.

Name Description

Source Code

Compiler

Variable

Operator

Control Structure

Function

Directive

W1.2 Operators

Describe the following symbols in the context of C source code.

Symbol Name Description

= 

+ - * /

%

++ --

+=   -=
*=   /=

#



W1.3 Exceeding Maximum or Minimum Values 

Consider the following block of C code.

int a = 2000000000; // 2 billion, 2x10^9

int b = 1000000000; // 1 billion, 1x10^9

int c = a + b; 

What int value does c hold at the end of this code block?

Attempt this calculation in a graphing calculator (e.g. www.desmos.com). Explain why you obtain different results. 

W1.4 Data Type Properties

Experiment using sizeof(), printf() and arithmetic operations to determine the following data type information information for 

our classroom workstation C compiler. Note that sizeof() returns the data size in units of ‘char size’. To convert to bits multiply by 

CHAR_BIT and #include <limits.h>.

Integer Data Types

Name Width (bits) Min. (signed) Max. (signed) Min. (unsigned) Max. (unsigned)

char

short

int

long

Floating Point Types

Name Width (bits) Significant Digits     
(base 10)

Largest Magnitude     
(power of 10)

Smallest Magnitude     
(power of 10)

float

double

http://www.desmos.com/


W1.5 Changing Data Types

Consider the following block of C code.

char ch;

int i;

i = 321;

ch = i; 

printf(“%c”, ch); 

What char value (character) does ch hold at the end of this code block? Explain why that letter is the result.

W1.6 Changing Data Types - II

Consider the following block of C code.

char ch;

int i;

ch = ‘q’;

i = ch; 

printf(“%d”, i); 

What int value (number) does i hold at the end of this code block? Explain why that number is the result.

W1.7 Arithmetic Errors and Data Types

Suppose a variable, score, has a value between 0 and 20. The following different code options are being considered for calculating 
score’s percent out of 20.

Option A:

int score = 18; 

score = (score / 20) * 100; 

printf(“%d”, score);

Option B:

int score = 18; 

score = ((double)score / 20) * 100; 

printf(“%d”, score);

Option C:

int score = 18; 

score = (score / 20.0) * 100; 

printf(“%d”, score);

Option D:

int score = 18; 

score = (int)(score / 20.0) * 100; 

printf(“%d”, score);

This code should produce 90 (18/20 = 90%), but some options do not work as intended. What does each result produce? Why do 
the options that don’t work correctly produce the results you see?


