
CEC Robotics

Microcontroller Lab 1 – Blinker Controller
Required Equipment and Supplies

• Raspberry Pi Pico (RP2040 dev. Board)
• USB Micro Cable
• Push Buttons [aka momentary switches] (2)
• 15kΩ Resistors (2)

• LED
• 820Ω Resistor (1)
• Breadboard
• Cables and 22ga wire as needed
• Bench-top DC power supply

Summary

Create a simple microcontroller based device on your breadboard with a blinking external LED and two buttons that
control the rate of blinking.

Part I. Circuit Construction

Construct the following circuit as described in the diagram on the right.

Notes

• Important : Turn off or disconnect Vsys from
power while programming by USB.

• Do not apply more than +6V by the bench
power supply, it may damage the MCU.

• The small → and ← arrows on the wiring are
simply to indicate intended inputs vs outputs.
They are not devices, but simply indicators of the
typical current flow on the wire.

• The 15kΩ resistors are pull up resistors which
means the push buttons are active low – the pin
will show 0V when the button is pressed.

Part II. MCU Programming

Create a new code project using the Pi Pico C SDK and Pi Pico Project Template on cec-code-lab.aps.edu/robotics.
Use API functions gpio_init() and gpio_set_dir() to setup the GPIO pins. gpio_put() and gpio_get()
can be used to read and write digital signal voltages. For details on these functions, consult the R. Pi Pico API
webpage

Technical Code Objectives

-Write a basic program to blink the external LED.

-Setup the two button pins as inputs. Code logic such that the LED blinks faster when the GP17 button is pressed, and
slower when the GP16 button is pressed.

-The LED blink should have a maximum and a minimum speed.

-Create global constant variables with ‘human readable names’ for the GPIO port number corresponding to the LED,
faster button and slower button.

-Create and use a global variable for the blink delay and global constant variables for blink increment and maximum
delay. You may use the variable for the delay increment as the minimum or create a minimum delay variable.

-Create a function to handle both button inputs named something like check_rate_buttons(). Call this function in
your primary while loop before making any changes to the LED pin to increase responsiveness.

-Create another function to enclose all GPIO initialization such as gpio_init() and gpio_set_dir() function
calls. Make sure to call this function once before your primary while loop.

