# **CEC Robotics**

Name:\_\_\_\_\_ Date:\_\_\_\_\_

## Circuit Lab 10 – 4-Bit Adder

#### **Required Equipment and Supplies**

- Circuit Simulator (software) ٠
- Resistors:  $22k\Omega$  (8),  $1.8k\Omega$  (5) •
- ICs: 7483 4-Bit Adder DIP-16 (1) •
- DIP Switch Module 4 Position (2) •

#### Part I. 4-Bit Adder Logic Simulation

- Indicator LEDs (5)
- Bench-top DC power supply
- Breadboard
- Cables and 22ga wire as needed •

Build the following logic circuit in a simulator, then test the arithmetic logic.

Note: It is quickest to build a two bit full-adder, then copy/paste and connect the carry outputs to carry inputs.



| <u>1a.</u> |   |            |   |            |  |
|------------|---|------------|---|------------|--|
| A1         | 0 | B1         | 0 | <b>S1</b>  |  |
| A2         | 1 | <b>B</b> 2 | 0 | S2         |  |
| A3         | 0 | <b>B</b> 3 | 1 | <b>S</b> 3 |  |
| A4         | 1 | <b>B</b> 4 | 1 | S4         |  |
|            |   |            |   | C-out      |  |

(convert to decimal) and check  $A + B = S^*$ 

| 2a. |   |            |   |            |  |
|-----|---|------------|---|------------|--|
| A1  | 1 | B1         | 0 | <b>S1</b>  |  |
| A2  | 0 | B2         | 0 | S2         |  |
| A3  | 1 | <b>B</b> 3 | 1 | <b>S</b> 3 |  |
| A4  | 1 | B4         | 0 | <b>S4</b>  |  |
|     |   |            |   | C-out      |  |

(convert to decimal) and check  $A + B = S^*$ 

| 3 <b>c</b> . |   |            |   |            |  |
|--------------|---|------------|---|------------|--|
| A1           | 1 | B1         | 1 | <b>S1</b>  |  |
| A2           | 0 | <b>B</b> 2 | 1 | S2         |  |
| A3           | 1 | <b>B</b> 3 | 1 | <b>S</b> 3 |  |
| A4           | 0 | <b>B4</b>  | 1 | S4         |  |
|              |   |            |   | C-out      |  |

(convert to decimal) and check  $A + B = S^*$ 

\*note the carry bit.

### Part II. Testing a 4-Bit Adder IC

Wire the 7483 4-Bit Adder IC in a DIP-16 package to test the outputs from part **I** in physical circuit. The pin configuration of the 7483 DIP-16 is described below.



Use a 4-pin DIP Switch to represent the 4 A bits and the 4 B bits. The Sum and Carry bits will be visible as LEDs that are illuminated for a '1', and off for a '0'. To verify that the circuit is functional, try each input combination from **I.a**, **I.b**, and **I.c**. You should get identical results to the simulator when your circuit is working properly.

|                             | Q & Q V+ B Q Q A                                                                          | + + + +                                   | + + + +             |
|-----------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------|---------------------|
| C G S S S S<br>J J J J LEPS |                                                                                           |                                           |                     |
|                             | $(\mathbf{x}, \mathbf{A}, \mathbf{B}, \mathbf{E}) = (\mathbf{x}, \mathbf{B}, \mathbf{B})$ | 22H [ X X X X X X X X X X X X X X X X X X | W W 22<br>W V V V V |

Notes about the above wiring scheme:

- Values will be read such that the **least significant bit** is the **farthest right** on both the input switches and output lights.

- The **DIP Switch** modules are **upside down** *on purpose*:

A binary **1** corresponds to the **UP** position (switch **OFF**). A binary **0** corresponds to the **DOWN** position (switch **ON**).