AP Calculus B/C – Compressive Review Quick Notes

Author: M. Wolverton v.1

Limits

• Limit Definition:

Intuitive description - a limit is an infinite process of approach. For $\lim_{x \to c} f(x)$, we evaluate f(x) at values infinitesimally close to c.

[Informal] $\lim_{x\to c} f(x) = f(c \pm dx)$ where dx is an infinitesimally x increment.

<u>Formal Definition</u> - The delta-epsilon definition of a limit has the same meaning but avoids direct reference to infinitesimal values. That means it can work with the real number system, \mathbb{R} (neither dx nor ∞ exist in \mathbb{R}). It works because an interval contains an infinite number of discrete values. [Larson p. 52]

[Formal]

 $\lim_{x \to c} f(x) = L \text{ if and only if}$ There exists a $\delta > 0$ for each $\varepsilon > 0$, such that $0 < |x - c| < \delta$ and $|f(x) - L| < \varepsilon$. Note: $\delta \rightarrow interval of x$ $\varepsilon \rightarrow interval of f(x)$

• Single sided limits

Left hand Limit	$\lim_{x\to c^-} f(x)$	Approach from Below ($x < c$), x increases toward c .	$\lim_{x\to\infty} f(x)$ is a form of left hand limit
Right hand Limit	$\lim_{x\to c^+}f(x)$	Approach from Above ($x > c$), x decreases toward c .	$\lim_{x\to-\infty} f(x)$ is a form of right hand limit

• Asymptotes

Vertical	$\lim_{x\to c^-}f(x)=\pm\infty$	Or	$\lim_{x\to c^+}f(x) = \pm\infty$	(where <i>c</i> is finite)
Horizontal	$\lim_{x\to\infty}f(x)=\mathbf{L}$	Or	$\lim_{x\to-\infty}f(x) = L$	(where L is finite)

The above excludes slant asymptotes which occur only in rational functions with numerator 1 degree higher than denominator

Continuity

<u>Definition</u> -

$\lim_{x\to c} f(x) = f(c)$

Point Continuity: The function value at a location equals its limit at that location.

Interval Continuity: Above must be true at every point in the interval. Continuity at interval endpoints is defined by single sided limits which stay within the interval.

This implies that the limit and function value actually exist: if either are undefined, the function is discontinuous by definition.

Nonexistent limits If any one of the below are true it means that a limit <u>does not exist</u>.

Left Limit ≠ Right Limit	$\lim_{x\to c^-}f(x)\neq \lim_{x\to c^+}f(x)$	Example:	$\lim_{x \to 0} \frac{ x }{x}$ Does Not Exist
Infinite or Divergent Limits	$\lim_{x\to c}f(x)=\pm\infty$	Example:	$\lim_{x \to 2} \frac{1}{(x-2)^2}$ Does Not Exist
Function Changes Values Infinitely Rapid Near Limit	*Note: Limit may exist if oscillations $\rightarrow 0$ amplitude	<u>Example:</u>	$\lim_{x \to 0} \sin\left(\frac{1}{x}\right) \text{Does Not Exist}$
	at c		$\mathbf{x} \rightarrow 0$ (\mathbf{x})

		<u>AP Ca</u>	alculus B/C – Compr Author: M.	essive Review Qu Wolverton v.1	<u>ick Notes</u>		
1	Discontinuities Removable	$\lim_{x\to c^-} f(x)$ Exists,	f(c) Does Not Exist	st	Example:	$\lim_{x\to 0}$	$\frac{\sin x}{x} = 1$
		Removable d	liscontinuities always occ	cur where the numero	itor and denomi	nator both have	zeros.
	Non-Removable	$\lim_{x\to c} f(x)$	Does Not Exist	[See	Nonexistent Lir	nits for example	s]
		It does not matter if $f(c)$ is explicitly defined, the function has a discontinuity at $x = c$ if the limit does not exist for <u>any</u> reason.					nit does not
1	Evaluating limits						
	Evaluate at limit point	Anywhere a functior evaluated	n is <mark>continuous</mark> it can sin	nply be	<u>Example:</u>	$\lim_{x\to 0}\frac{e^x}{x+1}=\frac{1}{6}$	$\frac{e^0}{1+1} = 1$
		1	$\lim_{x \to c} f(x) = f(c)$				
	Algebraically Cancel	$\lim_{x \to c} f(x) = f(c)$ When removable discontinuities are present, there may be a common factor in numerator and denominator $\lim_{x \to 1} \frac{x+1}{x^2+3x+2} \left(\to \frac{0}{0} \right)$					
		$\lim_{x \to 1} \frac{x+1}{x^2+3x+2} = \lim_{x \to 1} \frac{x+1}{(x+2)(x+1)} = \lim_{x \to 1} \frac{1}{x+2} = \frac{1}{3}$					
	Numeric Method	Technically successive approximation. The accuracy of a numeric method will depend on the function and the step size.Example: $x \to 0$ $sin(x)$ $x \to 0$ $(\to \frac{0}{0})$				$\left(\rightarrow \frac{0}{0} \right)$	
	x	-0.25 -	-0.1 -0.01	0	0.01	0.1	0.25
	f(x)		-0.1 -0.01 98334 0.999983				0.989616
		It is often helpful to decrease the order of magnitude between steps as the limit value is approached. The numeric method is exactly equal to the limit if x could be infinitely close on both sides.				les.	
	Squeeze Theorem	If $g(x) \ge f(x) \ge h(x)$ in the neighborhood of c , And $\lim_{x \to c} g(x) = a = \lim_{x \to c} h(x)$, $\lim_{x \to 0} \frac{\sin(x)}{x} \left(\to \frac{0}{0} \right)$			$\left(\rightarrow \frac{0}{0}\right)$		
	$\lim_{x \to c} f(x) = a$						
	$-x^{2}+1 \leq \frac{\sin(x)}{x} \leq x^{2}+1 \rightarrow \lim_{x \to 0} -x^{2}+1 = 1 ; \lim_{x \to 0} -x^{2}+1 = 1 \rightarrow \lim_{x \to 0} \frac{\sin(x)}{x} = 1$ $\frac{L'\text{Hopital's Rule}}{\text{If } \lim_{x \to c} \frac{f(x)}{g(x)} \rightarrow \frac{0}{0} \text{ or } \frac{\infty}{\infty}, \qquad \qquad \frac{Example:}{x \to 0} \lim_{x \to 0} \frac{\sin(x)}{x} (\rightarrow \frac{0}{0})$						$\frac{\mathbf{n}(x)}{x} = 1$
	L'Hopital's Rule				Example:	$\lim_{x\to 0}\frac{\sin(x)}{x}$	$\left(\rightarrow \frac{0}{0} \right)$
			$\mathbf{f}(\mathbf{x}) = \mathbf{f}'(\mathbf{x})$				

Then $\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$

AP Calculus B/C – Compressive Review Quick Notes

Author: M. Wolverton v.1

• Resolving Various Indeterminate Limit Forms with L'Hopital's Rule

<u>Conversion of limit type</u> - All indeterminate limit forms can be algebraically converted to $\frac{0}{0}$ or $\frac{\infty}{\infty}$. Conversion to either type allows for subsequent application of L'Hopital's Rule to either find the limit or confirm its nonexistence.

Limit type		Conversion Process		
0 · ∞	$\mathbf{L} = \lim_{x \to c} f(x) \cdot \mathbf{g}(x)$ $\left(\lim_{x \to c} f(x) = 0; \lim_{x \to c} g(x) = \infty\right)$	Substitute $g(x) = \frac{1}{(g(x))^{-1}}$	$\mathbf{L} = \lim_{x \to c} \frac{f(x)}{(g(x))^{-1}} \to \frac{0}{0}$	
1 [∞]	$\mathbf{L} = \lim_{x \to c} f(x)^{\mathbf{g}(x)}$ $\left(\lim_{x \to c} f(x) = 1; \lim_{x \to c} g(x) = \infty\right)$	Apply $\ln()$ to both sides, then Substitute $g(x) = \frac{1}{(g(x))^{-1}}$	$\ln(\mathbf{L}) = \lim_{x \to c} \frac{\ln(f(x))}{(g(x))^{-1}} \to \frac{0}{0}$	
00	$\mathbf{L} = \lim_{x \to c} f(x)^{\mathbf{g}(x)}$ $\left(\lim_{x \to c} f(x) = 0 ; \lim_{x \to c} g(x) = 0\right)$	Apply $\ln()$ to both sides, then Substitute $g(x) = \frac{1}{(g(x))^{-1}}$	$\ln(\mathbf{L}) = \lim_{x \to c} \frac{\ln(f(x))}{(g(x))^{-1}} \to -\frac{\infty}{\infty}$	
∞ ⁰	$\mathbf{L} = \lim_{x \to c} f(x)^{\mathbf{g}(\mathbf{x})}$ $\left(\lim_{x \to c} f(x) = \infty; \lim_{x \to c} g(x) = 0\right)$	Apply $\ln()$ to both sides, then Substitute $g(x) = \frac{1}{(g(x))^{-1}}$	$\ln(\mathbf{L}) = \lim_{x \to c} \frac{\ln(f(x))}{(g(x))^{-1}} \to \frac{\infty}{\infty}$	
$\infty - \infty$	$\mathbf{L} = \lim_{x \to c} f(x) - g(x)$ $\left(\lim_{x \to c} f(x) = \infty; \lim_{x \to c} g(x) = \infty\right)$	Substitute $g(x) = \frac{1}{(g(x))^{-1}}$ then Substitute $g(x) = \frac{1}{(g(x))^{-1}}$ then Combine terms with common denominator	$\mathbf{L} = \lim_{x \to c} \frac{f(x)}{(g(x))^{-1}}$	

• Determinate Limit Forms (possibly mistaken for indeterminate)

$\infty \cdot \infty = \infty$	$\lim_{x\to c} f(x) \cdot \mathbf{g}(\mathbf{x}) = \infty$	$\left(\lim_{x\to c}f(x)=\infty\;;\;\lim_{x\to c}g(x)=\infty\right)$
$0^{\infty} = 0$	$\lim_{x \to c} f(x)^{g(x)} = 0$	$\left(\lim_{x\to c}f(x)=0\;;\;\lim_{x\to c}g(x)=\infty\right)$
$0^{-\infty} = \infty$	$\frac{1}{\lim_{x \to c} f(x)^{g(x)}} = \infty$	$\left(\lim_{x\to c} f(x) = 0; \lim_{x\to c} g(x) = -\infty\right)$
$0^{\infty} = 0$	$\lim_{x\to c} f(x)^{\mathbf{g}(\mathbf{x})} = 0$	$\left(\lim_{x\to c}f(x)=0\ ;\ \lim_{x\to c}g(x)=\infty ight)$
$\infty^{-\infty} = 0$	$\frac{1}{\lim_{x \to c} f(x)^{g(x)}} = \infty$	$\left(\lim_{x\to c}f(x)=\infty\;;\;\lim_{x\to c}g(x)=-\infty\right)$
$\frac{0}{\infty} = 0$	$\lim_{x\to c}\frac{\mathbf{f}(\mathbf{x})}{\mathbf{g}(\mathbf{x})}=0$	$\left(\lim_{x\to c}f(x)=0\;;\;\lim_{x\to c}g(x)=\infty\right)$
$\frac{1}{\infty} = \infty$	$\lim_{x\to c}\frac{\mathbf{f}(\mathbf{x})}{\mathbf{g}(\mathbf{x})}=0$	$\left(\lim_{x\to c}f(x)=\infty\;;\;\lim_{x\to c}g(x)=0\;\right)$